skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Byrd, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fruit flies or Drosophila larvae exhibit a diverse range of locomotion gaits enabled by their soft, segmented bodies and intricate muscle arrangements. Their bodies, composed of multiple segments, are synchronously activated to propel forward through a combination of muscle elongation and contraction. Soft robotic systems, inspired by such biological marvels, face significant challenges in replicating these complex behaviors due to the intricate interplay between muscle activation, soft body dynamics, and frictional forces. To address these challenges, we propose a reduced-order model that captures the essential features of larval crawling. By modeling segments as a combination of prismatic and revolute joints, we can simulate the nonlinear motion resulting from muscle activation and body deformation. Our model demonstrates the potential of this approach to accurately describe larval movement, as validated by comparisons with actual larval trajectories. This research offers valuable insights into the design and control of soft robots and provides a framework for biologists to investigate the complex mechanisms of neuromuscular coordination in larvae. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. Soft robots, due to their flexibility, adaptability, and gentle handling over rigid robots, have shown better potential in numerous applications requiring operating in constrained spaces. Most of the soft robotic prototypes are of a linear form that can be modeled as a curve in space and are found in manipulators and limbs of locomoting robots. Planar soft robots have been proposed recently that are modeled as a surface and deform in 3D. Research on planar soft robots has been less extensive due to the challenges associated with modeling surface deformations efficiently. We present a curve-parametric approach for the deformation modeling of planar soft robot modules. Along with the Bezier patch method to approximate the surface at 30 Hz. Experimental evaluations on a prototype were developed and tested to validate that the proposed model can reasonably approximate the planar robot boundaries, and the surface derived from it. 
    more » « less